Michele H. Potashman,* James Bready, Angela Coxon, Thomas M. DeMelfi, Jr., Lucian DiPietro, Nicholas Doerr, Daniel Elbaum, Juan Estrada, Paul Gallant, Julie Germain, Yan Gu, Jean-Christophe Harmange, Stephen A. Kaufman, Rick Kendall, Joseph L. Kim, Gondi N. Kumar, Alexander M. Long, Seshadri Neervannan, Vinod F. Patel, Anthony Polverino, Paul Rose, Simon van der Plas, Douglas Whittington, Roger Zanon, and Huilin Zhao: Design, Synthesis, and Evaluation of Orally Active Benzimidazoles and Benzoxazoles as Vascular Endothelial Growth Factor-2 Receptor Tyrosine Kinase Inhibitors.

Page 4351. Coauthor Roger Zanon is incorrectly listed as a corresponding author with the asterisk symbol $(*)$ by his name. The symbol next to his name should be an open circle (O) indicating his affiliation with the Department of Pharmaceutics.
JM800006Z
10.1021/jm800006z

Published on Web 01/17/2008

2006, Volume 49

Peter B. Madrid, Ally P. Liou, Joseph L. DeRisi, and R. Kiplin Guy*: Incorporation of an Intramolecular HydrogenBonding Motif in the Side Chain of 4-Aminoquinolines Enhances Activity against Drug-Resistant P. falciparum.

Page 4540. The following section of Experimental Methods should read:
(7-Chloroquinolin-4-yl)-pyrrolidin-4-ylamine (16). A solution of 4,7-dichloroquinoline ($5 \mathrm{~g}, 25 \mathrm{mmol}$), cesium carbonate ($32.90 \mathrm{~g}, 100 \mathrm{mmol}$) and 3-aminopyrrolidine dihydrochloride ($7.95 \mathrm{~g}, 50 \mathrm{mmol}$) in diisopropylethylamine (100 mL) was heated at reflux for 4 h . After concentration under vacuum, the crude reaction mixture was purified on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$ (8.9:1:0.1) as an eluent to give 16 (4.3 g, 70\%): 100% pure by HPLC method A; 100% pure by HPLC method B. LCMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClN}_{3}[\mathrm{M}+\mathrm{H}]^{+} 248.1$. Found: 248.3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.69$ (d, $J=4.8$, $1 \mathrm{H}), 8.02$ (d, $J=2.0,1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.42$ (dd, J $=8.8,2.0,1 \mathrm{H}), 6.82(\mathrm{~d}, J=4.8,1 \mathrm{H}), 3.83(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}$, $1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.14$ (solvent), $2.14(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.2,150.4,149.7,134.2$, $128.0,126.3,123.73,119.1,102.8,60.3,51.1,50.2,34.5$.

JM701572A
10.1021/jm701572a

Published on Web 01/17/2008

